Aplikasi NIRS dan Principal Component Analysis (PCA) untuk Mendeteksi Daerah Asal Biji Kopi Arabika (Coffea arabica)
Abstract
Abstrak. Kopi merupakan spesies tanaman berbentuk pohon yang termasuk dalam famili Rubiaceae dan genus Coffea, tumbuh tegak, bercabang dan bila dibiarkan dapat tumbuh mencapai tinggi 12 meter. Pendeteksian mutu pangan yang cepat dan efisien dapat diwujudkan melalui pengembangan teknologi Near Infrared Reflectance Spectroscopy (NIRS). Sebanyak 54 sampel biji kopi diambil dari 6 Provinsi yang berbeda, yaitu: Aceh, Bali, Bengkulu, Nusa Tenggara Barat, Jawa Barat dan Jawa Timur. Pengamatan meliputi Principal Component Analysis (PCA) sebagai metode klasifikasi dan Pretreatment Multiplicative Scatter Correction (MSC) sebagai metode koreksi spektrum. Hasil pengujian menunjukkan bahwa PCA hanya mampu mengklasifikasikan biji kopi dari Provinsi Aceh dan Provinsi Jawa Timur, sedangkan dengan penambahan Pretreatment MSC mampu mengklasifikasikan biji kopi dari Provinsi Aceh dan Provinsi Bali dengan tingkat keberhasilan 100%.
Abstract. Coffee is belong to family Rubiaceae and the genus Coffea, grow upright, branched, and can grow up to 12 meters high. The detection of food quality quickly and efficiently can be realized through the development of Near Infrared Reflectance Spectroscopy (NIRS) technology. A total of 54 Coffee bean samples were taken from 6 different province, namely: Aceh, Bali, Bengkulu, West Nusa Tenggara, West Java and East Java. Data analysis included Principal Component Analysis (PCA) were used to classify coffee based on geographic origin. Multiplicative Scatter Correction (MSC) method was used as spectra correction. The results shows that PCA is able to classify coffee beans from the Aceh and East Java province, while the addition of MSC Pretreatment able to classify the coffee beans from the province of Aceh and Bali province with 100% success rate.
Keywords
Full Text:
PDFReferences
Cen H, He Y. 2007. Theory and Aplication of Near Infrared Reflectance Spectroscopy in Determination of Food Quality. J. Trends in Food Sci & Technol 18: 72-83.
Clarke, R.J. & Macrae, R. 1989. Coffee Chemistry. Vol. I & II. Elsevier Applied Science, London, UK.
Clifford, M.N. 1985. Chlorogenis Acids, Coffee Volume 1. Elsevier Applied Science. London and New York.
Iriawan, N , Astuti, S.P. 2006. Mengolah Data Statistik dengan mudah menggunakan Minitab 14. Yogyakarta: ANDI. ISBN 979-763-111-7.
Montgomery, D.C. 2001. Pengantar Pengendalian Kualitas Statistik. Alih Bahasa: Zanzawi Soejoeti.Yogyakarta: Universitas Gadjah Mada, hal. : 3 120.
Munawar AA. 2008. Non-destructive Inner Quality Prediction in Intact Mangos with NIRS Method [Thesis]. Goettingen: Georg-August University.
Munawar AA. 2014. Multivariate Analysis and Artificial Neural Network Approaches of Near Infrared Spectroscopis Data for Non-Destructive Quality Atrributes Prediction of Mango [Disertasi] Goettingen: Georg-August University.
Soedibyo, B. R. A. 1998. Alam Sumber Kesehatan, Balai Pustaka, Jakarta, 225-226.
DOI: https://doi.org/10.17969/jimfp.v1i1.1182
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Jurnal Ilmiah Mahasiswa Pertanian Unsyiah
JIM Agribisnis|JIM Agroteknologi|JIM Peternakan|JIM Teknologi Hasil Pertanian|JIM Teknik Pertanian|
JIM Ilmu Tanah|JIM Proteksi Tanaman|JIM Kehutanan
E-ISSN: 2614-6053 | 2615-2878 | Statistic | Indexing | Citation | Dimensions
Alamat Tim Redaksi:
Fakultas Pertanian,Universitas Syiah Kuala
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email:jimfp@usk.ac.id