Penentuan Kualitas Buah Jeruk (Citrus Sinensis L) Menggunakan Teknologi Laser Photo-Acoustics (LPAS) Dengan Metode Support Vector Machine (SVM)
Abstract
Abstrak. Penelitian ini bertujuan untuk mengetahui kandungan vitamin C dan kadar gula pada buah jeruk dengan menggunakan teknologi Laser Photo Acoustics. Penelitian ini menggunakan sampel buah jeruk manis sebanyak 20 buah dengan empat indeks yaitu indeks pertama tidak matang (TM), setengah matang (SM), matang (M) dan matang sekali (MS). Hasil penelitian menunjukan bahwa panjang gelombang yang diperoleh dalam menduga kadar vitamin C dan kadar gula dikisaran 4418 cm-1 - 4595 cm-1. Selanjutnya prediksi kadar gula terbaik mendapatkan (R2) sebesar 0.769, (r) sebesar 0.877, RMSEC 0.803 sedangkan RPD 2.09 yang tergolong Good Model Performance. Sedangkan untuk vitamin C mendaptkan koefisien determinasi (R2) 0.6182, koefisien kolerasi (r) sebesar 0.7862 dengan RMSEC 0.0231 sedangkan rasio RPD sebesar 1.61 yang merupakan prediksi yang masih kasar. Berdasarkan hasil penelitian yang dilakukan untuk aplikasi teknologi laser photo acoustics dapat disimpulkan bahwa teknologi laser dapat mendeteksi kandungan vitamin C dan Kadar gula pada jeruk.
Determination of the Quality of Oranges (Citrus sinensis L.) Using Laser Photo Acoustics (LPAS) Technology with the Support Vector Machine (SVM)
Abstract. This research aims to determine the content of vitamin C and sugar levels in citrus fruits using Laser Photo Acoustics technology. This study used a sample of 20 sweet oranges with four indices, the first index was not mature (TM), half cooked (SM), mature (M) and very mature (MS).The results showed that the wavelength obtained in estimating vitamin C levels and sugar levels in the range 4418 cm-1 - 4595 cm-1. Furthermore, the best sugar content prediction gets (R2) of 0.769, (r) of 0.877, RMSEC 0.803 while RPD 2.09 is classified as Good Model Performance. Whereas for vitamin C the determination coefficient (R2) 0.6182, the correlation coefficient (r) is 0.7862 with RMSEC 0.0231 while the RPD ratio is 1.61 which is a rough prediction. Based on the results of the research carried out for the application of photo acoustics laser technology it can be concluded that laser technology can detect the content of vitamin C and sugar content in oranges.
Keywords
Full Text:
PDFReferences
Cen, H dan Y. He. 2007. Theory and Application of Near Inrfrared Reflectance Spectroscopy in Determination of Food Quality. J. Trends in Food Sci & Technol 18: 72-83.
Munawar, A.A., Hoersten, D.V., Pawelzik, E., Wegener, J.K and Moerlein, D. 2013. Prediction of quality attributes using near infrared spectroscopic data combined with multivariate analysis. Annual conference 33rd Gesselschaft Fuer Informatik (German Association of Informatics Enginner). Potsdam, 20-22 February 2013.
Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lamertyn, J. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy : A review. Postharvest Biology and Technology, 46, 99-118.
Munawar, A.A., Yusmanizar, Syah , H. 2016. Rapid and simultaneous detection of honey adulteration and quality attributes prediction using near infrared spectroscopy. AIC-ICMSA conference, 4-6 October 2016.
Zulfahrizal, A., A. Munawar, dan H. Meilina. 2015. Rancang bangun Alat Sensor. Portable Berbasis Pengembangan Aplikasi Teknologi Near InfraRed Sebagai Metode Baru yang Rapid dan Non-Destructive untuk prediksi Kualitas Kakao. Laporan Penelitian. Universitas Syiah Kuala, Banda Aceh.
DOI: https://doi.org/10.17969/jimfp.v4i2.10945
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Ilmiah Mahasiswa Pertanian
JIM Agribisnis|JIM Agroteknologi|JIM Peternakan|JIM Teknologi Hasil Pertanian|JIM Teknik Pertanian|
JIM Ilmu Tanah|JIM Proteksi Tanaman|JIM Kehutanan
E-ISSN: 2614-6053 | 2615-2878 | Statistic | Indexing | Citation | Dimensions
Alamat Tim Redaksi:
Fakultas Pertanian,Universitas Syiah Kuala
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email:jimfp@usk.ac.id