Aplikasi Near Infrared Spectroscopy (NIRS) Untuk Mendeteksi Pencemaran Tanah

Puji Meihani, Agus Arip Munawar, Devianti Devianti

Abstract


Abstrak. Penelitian ini bertujuan untuk mendeteksi pencemaran tanah (zat Pb, Zn dan Cu) dengan menggunakan NIRS. Metode yang dilakukan ialah skala laboratorium dan hasil uji menggunakan NIRS. Pada pengujian menggunakan NIRS, metode koreksi spektrum yang digunakan ialah Standard Normal Variate (SNV) dan De-Trending (DT) sedangkan dalam membangun model prediksi, metode regresi yang digunakan yakni Partial Least Square (PLS). Keakuratan model prediksi dilihat berdasarkan parameter statistika seperti r, R2, RMSEC dan RPD. Hasil yang didapatkan pada pengujian menggunakan NIRS pada prediksi data mentah untuk ketiga parameter (Pb, Zn dan Cu) didapatkan nilai RPD masing-masing 2.69, 2.69, dan 2.68. Nilai tersebut termasuk ke dalam kategori good model performance. Untuk meningkatkan nilai RPD, dilakukan prediksi setelah dikoreksi menggunakan SNV. Nilai RPD yang didapatkan pada masing-masing parameter (Pb, Zn dan Cu) adalah 5.21, 4.56, dan 4.78. Nilai-nilai prediksi tersebut masuk ke dalam kategori very good performance. Sedangkan nilai RPD untuk prediksi menggunakan SNV untuk ketiga parameter (Pb, Zn dan Cu) masing-masing 4.31, 4.39 dan 4.08 yang dikategorikan sebagai very good performance. Berdasarkan nilai RPD yang didapatkan dari ketiga prediksi, prediksi dengan menggunakan SNV yang paling baik karena memiliki nilai RPD yang paling tinggi.

The Application of Near Infrared Spectroscopy (NIRS) to Soil Contamination Detection

Abstract. This study aims to soil pollution detection (Pb, Zn and Cu substances) by using NIRS. The method used are the laboratory scale and using NIRS. In using NIRS method, the spectrum correction method used is Standard Normal Variate (SNV) and De-Trending (DT). Prediction model using Partial Least Square (PLS). The accuracy of the prediction model is based on the statistical parameters such as r, R2, RMSEC and RPD. The results based on the NIRS method obtained the values of RPD are 2.69, 2.69, and 2.68 in prediction of raw data for parameters (Pb, Zn and Cu). These values belong to good model performance category. To increase the RPD score, prediction were made by using SNV spectrum correction method. RPD values obtained in each parameter (Pb, Zn and Cu) were 5.21, 4.56, and 4.78. These predictive values can be categorized as very good performance. The values of RPD for prediction used DT for the three parameters (Pb, Zn and Cu) 4.31, 4.39 and 4.08 which are categorized as very good performance. Based on RPD values obtained from the three predictions, predictions using SNV are the best because it has the highest RPD value.



Keywords


Pencemaran Tanah; Soil Contamination; NIRS; Standard Normal Variate ; De-Trending;

Full Text:

PDF

References


Karoui R. A. 2006. Chemical characterization of european emmental cheeses by near infrared spectroscopy using chemometric tools. International Dairy Journal. 16: 1211-1217.

Mouazen, A., H. Ramon., J. De Baerdemaeker dan M. Maleki. 2007. On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil Tillage Res. 93: 13–27.

Munawar, A. A. 2008. Multvariate analysis and artificial neural network approaches of near infrared spectroscopic data for non-destructive quality atributes prediction of mango. Dissertation. Georg-August University, Goettingen.

Munawar, A. A., D. Morlein., D. V. Hörsten., E. Pawelzik., dan J.K Wegener. 2016. Rapid and non-destructive prediction of mango quality attributes using Fourier transform near infrared spectroscopy and chemometrics. Engineering in Agriculture, Environment and Food, 9(3): 1-2.

Nicolai, B. M., A. Peirs., E. Bobelyn., K. Beullens., K.I. Theron., J. Lamertyn dan W. Saeys. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology. 46: 99-118.

Rodriguez, J.H., A. Fangmeier., A. Klumpp dan M.L. Pignata. 2011. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr. Journal of Hazardous Material. 187: 58–66.

Zhuang, P., H. Xia., M.B. McBride., N. Li dan Z. Li. 2009. Health risk from heavy metals viaconsumption of food crops in the vicinity of Dabaoshan Mine, South China. Science Total Environment. 407: 1551–1561.




DOI: https://doi.org/10.17969/jimfp.v4i2.10854

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Ilmiah Mahasiswa Pertanian

 


JIM Agribisnis|JIM Agroteknologi|JIM Peternakan|JIM Teknologi Hasil Pertanian|JIM Teknik Pertanian|
JIM Ilmu Tanah|JIM Proteksi Tanaman|JIM Kehutanan


E-ISSN: 2614-6053 2615-2878 Statistic Indexing | Citation | Dimensions


Alamat Tim Redaksi:
Fakultas Pertanian,Universitas Syiah Kuala
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Email:jimfp@usk.ac.id